Что такое ступица зубчатого колеса

Опубликовано: 29.04.2024

Ступица – сердцевина во вращающемся механизме, с отверстием для посадки на вал/ось. Служит основной деталью колеса и подвески, предназначена для фиксации и установки колеса, а также всех его компонентов. Обеспечивает доступ к другим деталям в случае поломки, кроме тех ситуаций, когда выходит из строя тормозной барабан, диск или подшипник.

Классификация ступиц

Для ведущих управляемых и неуправляемых колес. Для неуправляемых: деталь устанавливается на ведущих осях легковых/грузовых автомобилях, в том числе и спецтехнике, но только с задним приводом. Для управляемых: ступица размещается на переднем мосту автотранспортных средств с передним приводом, оптимальна также и для полноприводных автомобилей.
Для ведомых управляемых и неуправляемых колес. Для управляемых колес: крепится на передних колесах, но для машин с задним приводом. Для неуправляемых: установка ступицы предусмотрена на задние колеса, но с передним приводом.


Функции и задачи ступиц

Ступица, как часть подшипника, обеспечивает колёсам автомобиля полноценное вращение. Все ступицы передают крутящий момент колесу, удерживают тормозную систему авто, крепят колесо к подвеске, вращают его вокруг оси. За счёт этого автомобиль осуществляет свою главную функцию – едет.
В передних и задних колёсах детали подшипника выполняют немного разные функции.
Основные задачи ступиц передних колёс – соединение диска с поворотным механизмом, торможение и движение автомобиля в целом, если он переднеприводный. Дело в том, что в этом случае именно через эту запчасть происходит вращение колеса. В заднеприводных автомобилях важными являются не только передние, но и задние ступицы. Они обеспечивают крутящий момент, ответственные за тормозной путь машины, оснащены датчиками движения и скорости (в современных иномарках).

Для чего нужна ступица колеса

  1. • передача крутящего момента колесу;
  2. • удержание узлов на полуоси;
  3. • обеспечение вращения колеса;
  4. • удержание барабана и тормозного диска;
  5. • фиксация диска колеса.


Конструкционные особенности

Конструкция ступицы состоит из обода со шпильками или отверстиями – они нужны для крепежа колеса. Во внутренней части изделия есть специальное посадочное место для подшипника. В запчасти есть также отверстие, чтобы установить полуось. А в дорогих современных авто можно также увидеть «гнездо» - это посадочное место для датчика АБС. Конструкция подшипника может отличаться: бывают конусообразные и роликовые. Бывают ещё шариковые, но их сейчас использовать не рекомендуют.

Чертеж ступицы

Назначение

Функциональные особенности детали в первую очередь сказываются на работе тормозного и рулевого управления. Благодаря работе ступицы осуществляется вращения колеса вокруг оси, при этом подвеска закреплена и надежно удерживается на посадочном месте.

Особенности крепления

Ступица крепится к подшипнику или двум, благодаря чему имеет возможность вращаться и передавать это вращение колесу. Металлическую запчасть прикрепляют шайбой или несколькими гайками. Само изделие устанавливают на край коленвала с помощью подшипника. Сейчас обычно ступицы крепят к роликовым или конусным подшипникам. Изделие для крепления колеса изготавливают из высокопрочного металла в виде цельнолитой болванки. Заготовку потом мастер обрабатывает на станке до готовой запчасти.

Для каких видов спецтехники применяется

  1. • строительной: бетономешалки, автокраны и экскаваторы;
  2. • подъемной: автовышки, краны-манипуляторы, погрузчики;
  3. • коммунальной: снегоуборочные машины;
  4. • сельскохозяйственной: уборочные машины;
  5. • дорожной: бетоноукладчики и асфальтоукладчики, а также катки.

Стандартные характеристики и размеры

Подшипниковые детали для крепления колёс изготавливают разного размера. Речь идёт о диаметре ступицы. Размерные характеристики запчасти всегда будут зависеть от марки автомобиля и размера колёсных дисков. Производители придерживаются правила: цилиндр металлического изделия должен всегда совпадать с размером колеса автомобиля. Определением этих параметров занимается специальная система – DLA. Дело в том, что большие колёса на ступицах маленького диаметра будут болтаться. Иногда для колёсных дисков большого диаметра, под которые не подходит стандартная ступица, устанавливают дополнительное переходное кольцо.


Причины поломки и замена ступицы

Из-за поломанной ступицы может барахлить тормозная система. Если вовремя обнаружить и устранить поломку детали, можно избежать серьёзных аварий и трат на более сложный ремонт. Причинами поломки детали подшипника могут стать: агрессивная и неаккуратная езда, «дрифтование», протирание брюхом автомобиля гравия, песка или грязевой жижи на дорогах, регулярное попадание колёсами в ямы и на кочки, перегруз. В некоторых случаях, запчасть может выйти из строя из-за изначального брака при сборке на заводе. Среди основных признаков выхода из строя запчасти – слабые толчки, неприятный звук, ощущение вибрации кузова, укачивание.

Определить поломку ступицы поможет стук и слух

- Первый способ – постучать о колесо ногой. От лёгких ударов шины не должны ни шататься, ни люфтовать. Если же ощутили шатание или заметили зазор между запчастями при постукивании, то это сигнал о поломке.

- Другой вариант – прислушаться во время езды. Если из-под колёс доносится неприятный режущий звук или любой другой посторонний шорох – деталь колеса следует немедленно заменить.

На передних и задних колёсах неисправность запчасти определяют по-разному.
На передних шинах это сделать проще. Нужно разогнать автомобиль до скорости 60 км/час и выше и повилять по дороге в разные стороны. Если поломался левый подшипник, то звук будет усиливаться на левом повороте, а если правый – соответственно при повороте вправо.
Неисправные ступицы на задних колёсах ведут себя иначе. Определить, какая поломалась – трудно. Бывает, что неприятный звук доносится справа, но сломана левая запчасть. Опытные автомобилисты советуют приподнять корму авто, после чего покрутить колесо в разные стороны. Одно и другое. Там, где услышите хруст, посторонний звук или обнаружите люфт – нужен ремонт либо замена детали.

Подшипники ступицы

Данная деталь представляет собой подшипник качения, состоящий из внутренних/наружных колец и сепаратора. Какие виды выделяют:

Наиболее часто в различных машинах применяют зубчатые колёса среднего диаметра (примерно от 80 до 200 мм). Такие колёса изготавливают дисковыми (рисунок 3а). Колёса большего диаметра делают со спицами (рисунок 3б), а небольшого – сплошным, т.е. без диска и без спиц (рисунок 3в).





а – дисковое зубчатое колесо; б – зубчатое колесо со спицами; в – сплошное зубчатое колесо.

Рисунок 3 – Виды зубчатых колес

Основными элементами зубчатого колеса (рисунок 4) являются зубья, каждый зуб состоит из головки зуба и ножки: Зубья находятся на ободе колеса и вместе с ободом составляют зубчатый венец: более тонкая часть колеса – диск соединяет ступицу с ободом, внутри ступицы делают отверстие для вала с пазом для шпонки. Шлицевое соединение показано на покадровых рисунках 25, 26, 27, или в демоверсии на компакт диске. На рисунке 4 показаны условные изображения элементов зубчатого колеса.

daокружность вершин – это самая большая окружность, ограничивающая вершины головок зубьев колес: её условно изображают сплошной основной линией.

d – делительная окружность, делящая каждый зуб на две неравные части: меньшую – головку зуба и большую – ножку зуба: её условно изображают штрихпунктирной тонкой линией.

Рисунок 4 – Условные изображения элементов зубчатого колеса

dfокружность впадин, проходящая по очертаниям впадин между зубьями: её условно изображают сплошной тонкой линией.

dобокружность обода, обозначающая внутреннее очертание обода. dстокружность ступицы, обозначающая внешнее очертание ступицы. dв – диаметр окружности отверстия для вала.

hа – высота головки зуба. hf – высота ножки зуба.

Pn – нормальный шаг зубьев – кратчайшее расстояние по делительной или начальной поверхности зубчатого колеса между эквидистантными одноименными теоретическими линиями соседних зубьев.

S – толщина зуба. Z – число зубьев.

m – нормальный модуль зубьев – это линейная величина в p раз меньшая нормального шага зубьев.

bпаза – ширина шпоночного паза.

tj – глубина шпоночного паза.

При выполнении рабочего чертежа зубчатого колеса при заданных исходных данных, согласно таблице 1, необходимо рассчитать элементы зубчатого колеса по формулам, приведенным в таблицах 2, 3.

Таблица 1 – Исходные данные для расчета.

Смотри вариант задания

Таблица 2 – Расчет основных геометрических параметров цилиндрической зубчатой передачи

коническое

Зубчатое колесо — один из основных элементов зубчатой передачи, работающий в паре с другим зубчатым колесом (шестерней) или зубчатой рейкой. Служат зубчатые колеса для передачи и преобразования механической энергии между силовыми агрегатами и далее для исполнительных механизмов машин. Зубчатые передачи имеют преимуществами перед другими видами передач:

  • Способность выдерживать значительные нагрузки при меньших габаритах.
  • Постоянство и высокое значение (до нескольких сот) передаточного числа.
  • Надежность и длительный срок службы.
  • Применение в широком диапазоне скоростей и мощностей.

цилиндрическое

Виды зубчатых колес и область применения

Цилиндрические зубчатые колеса прямозубые. С наружным и внутренним зацеплением. Служат для передачи энергии вращения между валами с параллельными осями. Наиболее распространены благодаря сравнительной простоте изготовления, обслуживания, надежности и малым габаритам. Применяются во всех отраслях машиностроения: станкостроение, тяжелое оборудование, автомобильное производство, производство редукторов и др. Передачи с прямозубыми цилиндрическими колесами обладают наиболее высокой кинематической точностью. Поэтому востребованы в приборостроении.

Конические зубчатые колеса (с прямой и тангенциальной формой зуба). Для зубчатых передач с пересекающимися осями (обычно под 90 градусов). Требуют для изготовления специальных станков, более требовательны к точности изготовления, точности установки, усложняют конструкцию опор валов.

Применяются во фрезерных и зубонарезных станках. Также нашли применение в конических редукторах, дифференциальных механизмах — там, где по компоновке редуктора предусмотрены передачи с пересекающимися осями.

Червячные колеса. Для зубчатых передач с перекрещивающимися (обычно под 90 градусов) осями. Сложнее цилиндрических колес в изготовлении, быстрее изнашиваются.

Обладают низким уровнем шума, плавностью хода, обусловленные особенностями механического зацепления червяка и червячного колеса. Эти свойства ценятся в металлообрабатывающих станках, цеховых электрокарах, мешалках, бетономешалках, приводах ворот и т.д.

Только у червячных колес есть эффект «самоторможения» для передач с передаточным числом свыше 1:35. При остановке электродвигателя выходной вал невозможно провернуть. Поэтому червячные колеса применяют в редукторах там, где важна техника безопасности, сохранность грузов при перегрузке: подъемники, наклонные транспортеры. При определённых требованиях это позволяет сэкономить на дополнительном тормозном устройстве.

Подбор зубчатых колес по каталогу

Компания Техноберинг предлагает качественные зубчатые колеса производства Sati (Италия). Вся продукция сертифицирована, соответствует ГОСТ РФ и стандартам ISO.

червячное

Пользуйтесь удобной интерактивной таблицей для подбора зубчатых колес. Она простая, интуитивно понятная. Просто заполняйте характеристики (вводите или выбирайте из предложенных вариантов) последовательно согласно спецификации по вашей документации.

  • Для цилиндрических зубчатых колес: передаточное число, количество зубьев и наличие (отсутствие ступицы).
  • Для конических колес. Конические зубчатые колеса очень требовательны к точности изготовления и точности установки, поэтому производитель рекомендует приобретать сразу пару зубчатой передачи. Для выбора пары необходимо ввести: модуль, передаточное число и количество зубьев обеих шестерен.

Зубчатые колеса выпускают также компании SKF (Швеция) и Bonfiglioli Riduttori (Италия).

Приобретайте ответственные решения для производственных задач в компании с долголетней репутацией, широкой линейкой продукции и легкодоступным оперативным складом.

Опытные специалисты Техноберинга подскажут, быстро подберут и порекомендуют наиболее оптимальный вариант зубчатой пары для решения вашей производственной задачи.

Магазин Техноберинг — надёжный поставщик качественных колес и шестерен для зубчатых передач!

При конструировании зубчатого колеса учитывают материал, из которого оно будет изготовлено, требуемый диаметр и способ получения заготовки.

Стальные зубчатые колеса

Зубчатые колеса диаметром до 150 мм в единичном и мелкосерийном производстве обычно изготовляют из круглого проката; в средне-, крупносерийном и массовом производстве предпочтительнее применять кованые или штампованные заготовки, имеющие более высокие механические характеристики.

Шестерни изготовляют за одно целое с валом (вал-шестерня) (рис. 1, а, б) или делают съемными, если расстояние χ от впадины зуба до шпоночного паза (рис. 2) больше 2,5 mn для цилиндрических шестерен и 1,8 me для конических. В случае цельной конструкции увеличивается жесткость вала и уменьшается общая стоимость вала и шестерни. Разъемная конструкция позволяет выполнить шестерню и вал из разных материалов, а при поломке одной детали вторую оставить без замены. На рис. 1, а показана конструкция вала-шестерни, когда диаметр впадин зубьев df1 превышает диаметр вала dб.п. (диаметр буртика подшипника), что обеспечивает свободный выход инструмента при нарезании зубьев. При df1 < dб.п. (рис. 1, б) выход фрезы lвых определяют прочерчиванием по ее наружному диаметру Dф, который принимают по табл. 1 в зависимости от mn и степени точности передачи.

Цилиндрические зубчатые колеса диаметром до 400. 500 мм (в отдельных случаях до 600 мм) можно выполнять коваными, штампованными, литыми или сварными.

Конструктивные элементы зубчатых колес показаны на рис. 3.

Типовые конструкции зубчатых колес и основные соотношения их элементов даны на рис. 4—8. Кованые заготовки для зубчатых колес применяют при наружном диаметре колеса 4,df < 200 мм или при нешироких колесах ba < 0,2) диаметром da до 400 мм. Операция штамповки отличается высокой производительностью и максимально приближает форму заготовки к форме готового колеса. Для облегчения заполнения металлом и освобождения от заготовки штамп, а следовательно, и заготовка должны иметь радиусы закруглений r ≥ 5 мм и штамповочные уклоны γ ≥ 5° (рис. 4). Внутреннюю поверхность обода, наружную поверхность ступицы и поверхности диска штампованных колес обычно не обрабатывают. Конструкция литого колеса дана на рис. 5.

Таблица 1. Значения диаметра фрезы Dф, мм
Степень
прочности
передачи
Номинальный модуль mn, мм
2. 2,252,25. 2,753. 3,754. 4,55. 5,56. 7
7
8. 10
90
70
100
80
112
90
125
100
140
112
160
125
Конструкция вала - шестерни
Рис. 1. Конструкция вала — шестерни
Элемент шестерни при шпоночном соединении
Рис. 2. Элемент шестерни при шпоночном соединении
Конструктивные элементы колес
Рис. 3. Конструктивные элементы колес:
a — цилиндрического; б — конического; в — червячного
Цилиндрические зубчатые колеса
Рис. 4. Цилиндрические зубчатые колеса при da≤ 500мм:
а —штампованное; б— кованое; dст= 1,6dв; lст≥ bпри соблюдении условия
lст= (0,8. 1,5)dв; δ o= 2,5mn+2 , но не менее 8. 10 мм; n = 0,5mn для обода, n для ступицы в зависимости от диаметра dв; Dотв= 0,5(Do+dст); dотв= 15. 25 мм; c = (0,2. 0,3)b для штампованных и c = (0,2. 0,3)b для кованых колес
Литое цилиндрическое зубчатое колесо
Рис. 5. Литое цилиндрическое зубчатое колесо при da= 400. 1000 мм: b ≤ 200 мм dст= 1,6dв — для стального литья; dст= 1,8dв для чугунного литья; lст≥ b
при соблюдении условия lст= (0,8. 1,5)dв; δ o= 2,5mn+ 2 ≥ 8 мм;
n = 0,5mn для обода n для ступицы; c = H/5, но не менее 10 мм;
S = H/5, но не менее 10 мм; e = 0,8δ o; H= 0,8dв; H1= 0,8H; R — вписанная дуга окружности

Бандажированное зубчатое колесо
Рис. 6. Бандажированное зубчатое колесо при dв свыше 600 мм: dст= 1,6dв — для стального литья; dст= 1,8dв - для чугунного;lст≥ b
при соблюдении условия lст= (0,8. 1,5)dв; c = 0,15b; δ o= 4mn, но не менее 15 мм; t = δ o; e = 0,8δ o; d1= (0,05. 0,1)dв; l1= 3d1;b ≥ 300 мм
Сварное зубчатое колесо
Рис. 7. Сварное зубчатое колесо:
lст= (0,8. 1,5)dв≥ b; dст= 1,6dв; δ o= 2,5mn, но не менее 8 мм;s = 0,8c ; Dотв= 0,5 (Do+ dст); dотв= 15. 20 мм. Катеты швов: Ka= 0,5dв; Kь= 0,1dв но не менее 4 мм. Ребра приваривают швом Kб Шевронное зубчатое колесо с канавкой посередине
Рис. 8. Шевронное зубчатое колесо с канавкой посередине:
lст= b + a; c = (0,3. 0,35)(b + a); δ o= 4mn+ 2; h = 2,5mn; a — в зависимости от модуля. Остальные размеры см. рис. 4, 5

Размеры ступицы выбирают по рекомендациям, приведенным под рисунками. Длину ступицы lст по возможности принимают равной ширине венца колеса b, что обеспечивает наименьшую ширину редуктора. Отношение длины ступицы к диаметру вала должно быть не меньше 0,5. При отношении меньше 0,8 на валу предусматривают буртик, исключающий торцевое биение колеса, к которому будет прижиматься торец ступицы колеса. Если по условиям расчета (см. расчет шпоночного и шлицевого соединений) lст> b, то ступицу желательно сместить по оси колеса до совпадения одного ее торца с торцом венца (см. рис. 3, а), что дает возможность нарезать зубья сразу на двух колесах. Реже (для одноступенчатых редукторов) колеса изготовляют со ступицей, выступающей в обе стороны относительно венца (рис. 3, в), при этом зубья можно нарезать только на одном колесе. При одинаковой длине ступицы и ширине венца можно одновременно нарезать зубья на нескольких колесах.

С целью экономии материала, при больших диаметрах колес, для соединения ступицы с венцом колеса вместо сплошного диска применяют спицы. Зубчатые колеса большого диаметра (при внешнем диаметре da≥ 600 мм) иногда делают бандажированными (рис. 6): венец — стальной кованый (бандаж), а колесный центр — из стального или чугунного литья. Венец сопрягается с колесным центром посадкой с гарантированным натягом. Для большей надежности в плоскости соединения венца с центром ставят винты; соединения проверяют на смятие по материалу колесного центра: при стальном колесном центре [σ] см≥ 0,3σ т, при чугунном [σ] см≥ 0,4σ в.и, где σ т — предел текучести; σ в.и — предел прочности чугуна на изгиб.

При индивидуальном изготовлении колёса иногда делают сварными (рис. 7). При диаметре da≥ 1500 мм для удобства сборки зубчатые колеса делают разъемными — из двух половин.

На торцах зубьев и обода выполняют фаски n = 0,5mn, размер которых округляют до стандартного значения 1; 1,2; 1,6; 2; 2,5; 3; 4; 5.

Острые кромки на торцах ступицы притупляют фасками n x 45, размер которых принимают в зависимости от диаметра вала d:

d, мм
n, мм
20. 30
1
30. 40
1,2
40. 50
1,6
50. 80
2
Продолжение
d, мм
n, мм
80. 120
2,5
120. 150
3
150. 250
4
250. 500
5

Шевронные зубчатые колеса (рис. 8) отличаются от других цилиндрических колес большей шириной. Наиболее часто шевронные колеса изготовляют с канавкой посередине, предназначенной для выхода червячной фрезы, нарезающей зубья. При известных размерах фрезы ширину канавки a определяют прочерчиванием. Приближенно размер а можно определить в зависимости от модуля m:

m, мм
a, мм
1,5
27
2
32
2,5
37
3
42
3,5
47
4
53
5
60
6
67
7
75
8
85
10
100

Остальные конструктивные элементы шевронных колес принимают по соотношениям, указанным под рис. 8.

Конические зубчатые колеса изготовляют коваными, штампованными, литыми или из круглого проката (рис. 9—11).

Конические колеса с внешним диаметром вершин зубьев dae< 120 мм конструируют, как показано на рис. 9. В том случае, когда угол делительного конуса σ < 30 °, колесо выполняют по рис. 9, а, при σ < 45 ° — по рис. 9, б. Если 30° ≤ σ ≤ 45° , можно использовать обе формы. Штампованные колеса (рис. 10, а) применяют в серийном производстве. При внешнем диаметре вершин dae≥ 300 мм используют также литые конические колеса с ребрами жесткости.

Ступицу в зубчатых конических колесах необходимо располагать так, чтобы при закреплении колеса на оправке для нарезания зубьев обеспечивался зазор а> 0,5 mte для свободного выхода инструмента, где т,е внешний окружной модуль (рис. 11).

Коническое зубчатое колесо
Рис. 9. Конические зубчатые колеса при dae< 120 мм:
a — при δ < 30° ; б— при 5 >45°; диаметр ступицы dст= 1,6dв; lст= (0,9. 1,2)dв;
δ o= 2,5mn+ 2, но не менее 10 мм; n = 0,5mn Коническое зубчатое колесо
Рис. 10. Конические зубчатые колеса при dae до 500 мм: а — штампованное; б — кованое dст= 1,6dв; lст= (0,9. 1,2)dв., но не менее 10 мм; c = (0,1. 0,17)Re; n = 0,5mn; размеры Dотв и dотв определяют конструктивно Крепление конического колеса при нарезании зубьев

Рис. 11. Крепление конического колеса при нарезании зубьев Зубчатое колесо из пластмассы со стальной втулкой, установленной при формовании колес
Рис. 12. Зубчатое колесо из пластмассы со стальной втулкой (ступицей), установленной при формовании колес Зубчатое колесо из пластмассы со стальной сборной ступицей
Рис. 13.13. Зубчатое колесо (шестерня) из пластмассы со стальной сборной ступицей

В дисках цилиндрических и конических зубчатых колес предусматривают отверстия диаметром dотв, используемые для закрепления при обработке на станках и при транспортировке. При больших размерах отверстий они служат для уменьшения массы колес, а в литых колесах также для выхода литейных газов при отливке.

Неметаллические зубчатые колеса.

Неметаллические зубчатые колеса. Зубчатые колеса из пластмасс (текстолит, древопластики, полиамиды и т. п.) работают более бесшумно, чем металлические, что имеет особое значение при больших скоростях. Чтобы понизить коэффициент трения между зубьями, одно зубчатое колесо делают из пластмассы, а второе выполняют металлическим. Пластмассы имеют сравнительно небольшие сопротивления срезу и смятию, поэтому в большинстве случаев для передачи момента применяют стальную втулку-ступицу, прочно соединяемую с телом колеса. В небольшие колеса ступицу устанавливают при формовании. Для лучшего сцепления наружную поверхность ступицы делают рифленой (накатанной) (рис. 12). Чтобы предотвратить выкрашивание и откалывание отдельных слоев пластмассы, края зубьев защищают стальными дисками (рис. 13). Толщину диска рекомендуется принимать равной половине модуля, но не более 8 мм и не менее 2 мм. Материал дисков —сталь Ст.2, Ст.З.

Зубчатые колеса больших размеров обычно делают сборными из отдельных секций.

Ширину зубчатого колеса из пластмасс принимают равной ширине зацепляющегося с ним металлического колеса или несколько меньше во избежание местного износа и выработки зубьев

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КОЛЕСА ЗУБЧАТЫЕ ЦИЛИНДРИЧЕСКИЕ МЕЛКОМОДУЛЬНЫЕ
ПРЯМОЗУБЫЕ И КОСОЗУБЫЕ

Типы. Основные параметры и размеры

Cylindrical small modul straight and helical gears.
Types. Basic parameters and dimension

Срок действия с 01.01.78
до 01.01.83*
______________________________
* Ограничение срока действия снято
постановлением Госстандарта СССР
от 09.10.89 N 3043 (ИУС N 1, 1990 год). -
Примечание "КОДЕКС".

РАЗРАБОТАН Центральным конструкторским бюро стандартизации в приборостроении (ЦКБстандартаприбор)

Руководитель темы Л.П.Марченко

Специальным конструкторским бюро вычислительных машин (СКБ ВМ)

Руководитель темы и исполнитель Я.И.Станкевич

ВНЕСЕН Министерством приборостроения, средств автоматизации и систем управления СССР

Начальник Научно-технического управления М.С.Шкабардня

ПОДГОТОВЛЕН К УТВЕРЖДЕНИЮ Всесоюзным научно-исследовательским институтом по нормализации в машиностроении (ВНИИНМАШ)

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 11 февраля 1977 года N 363

1. Настоящий стандарт распространяется на зубчатые цилиндрические прямозубые и косозубые колеса для передач внешнего эвольвентного зацепления с нормальным модулем от 0,15 до 0,8 мм включ. и числом зубьев до 200.

Стандарт не распространяется на зубчатые колеса специальной конструкции (паразитные, трибы, блоки и т.п.) и зубчатые колеса для передач специального назначения (планетарные, люфтовыбирающие), а также на зубчатые колеса, являющиеся сборочными единицами.

2. Исходный контур зубчатых колес - по ГОСТ 9587-68.

3. Устанавливаются следующие типы зубчатых колес:

с односторонней ступицей (черт.2);

с двусторонней ступицей (черт.3).

Тип 1


Тип 2


Тип 3

4. Модули прямозубых и косозубых цилиндрических колес должны соответствовать значениям 1-го ряда модулей в диапазоне от 0,15 до 0,8 мм включ. и 0,7 мм 2-го ряда модулей по ГОСТ 9563-60.

Читайте также: